Comparisons between reduced order models and full 3D models for fluid-structure interaction problems in haemodynamics

نویسندگان

  • Claudia Maria Colciago
  • Simone Deparis
  • Alfio Quarteroni
چکیده

When modeling the cardiovascular system, the effect of the vessel wall on the blood flow has great relevance. Arterial vessels are complex living tissues and three-dimensional specific models have been proposed to represent their behaviour. The numerical simulation of the 3D3D Fluid Structure Interaction (FSI) coupled problem has high computational costs in terms of required time and memory storage. Even if many possible solutions have been explored to speed up the resolution of such problem, we are far from having a 3D-3D FSI model that can be solved quickly. In 3D-3D FSI models two of the main sources of complexity are represented by the domain motion and the coupling between the fluid and the structural part. Nevertheless, in many cases, we are interested in the blood flow dynamics in compliant vessels, whereas the displacement of the domain is small and the structure dynamics is less relevant. In these situations, techniques to reduce the complexity of the problem can be used. One consists in using transpiration conditions for the fluid model as surrogate for the wall displacement, thus allowing problem’s solution on a fixed domain. Another strategy consists in modeling the arterial wall as a thin membrane under specific assumptions [C.A.Figueroa et al., Computer Methods in Applied Mechanics and Engineering, 195(41-43),2006 , F.Nobile et al., SIAM Journal on Scientific Computing, 30(2), 2008] instead of using a more realistic (but more computationally intensive) 3D elastodynamic model. Using this strategy the dynamics of the vessel motion is embedded in the equation for the blood flow. Combining the transpiration conditions with the membrane model assumption, we obtain an attractive formulation, in fact, instead of solving two different models on two moving physical domains, we solve only a Navier-Stokes system in a fixed fluid domain where the structure model is integrated as a generalized Robin condition. In this paper, we present a general formulation in the boundary conditions which is independent of the time discretization scheme choice and on the stress-strain constitutive relation adopted for the vessel wall structure. Our aim is, first, to write a formulation of a reduced order model with zero order transpiration conditions for a generic time discretization scheme, then to compare a 3D-3D FSI model and a reduced FSI one in two realistic patient-specific cases: a femoropopliteal bypass and an aorta. In particular, we are interested in comparing the wall shear stresses, in fact this quantity can be used as a risk factor for some pathologies such as atherosclerosis or thrombogenesis. More in general we want to assess the accuracy and the computational convenience to use simpler formulations based on reduced order models. In particular, we show that, in the case of small displacements, using a 3D-3D FSI linear elastic model or the corrispondent reduced order one yields many similar results.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Reduction of Reservoir Fluid Equilibrium Calculation for Peng-Robinson EOS with Zero Interaction Coefficients

For some of the EOS models the dimension of equilibrium problem can be reduced. Stability and difficulties in implementation are among the problems of flash calculation. In this work, a new reduction technique is presented to prepare a reduced number of equilibrium equations. Afterwards, a number of appropriate solution variables are selected for the prepared equation system to solve the equati...

متن کامل

Presenting a Modified SPH Algorithm for Numerical Studies of Fluid-Structure Interaction Problems

A modified Smoothed Particle Hydrodynamics (SPH) method is proposed for fluid-structure interaction (FSI) problems especially, in cases which FSI is combined with solid-rigid contacts. In current work, the modification of the utilized SPH concerns on removing the artificial viscosities and the artificial stresses (which such terms are commonly used to eliminate the effects of tensile and numeri...

متن کامل

Investigation of Fluid-structure Interaction by Explicit Central Finite Difference Methods

Fluid-structure interaction (FSI) occurs when the dynamic water hammer forces; cause vibrations in the pipe wall. FSI in pipe systems due to Poisson and junction coupling has been the center of attention in recent years. It causes fluctuations in pressure heads and vibrations in the pipe wall. The governing equations of this phenomenon include a system of first order hyperbolic partial differen...

متن کامل

POD reduced-order unstructured mesh modelling applied to 2D and 3D fluid flows

A new scheme for implementing a reduced order model for complex meshbased numerical models (e.g. finite element unstructured mesh models), is presented. The matrix and source term vector of the full model is projected onto the reduced bases. The proper orthogonal decomposition (POD) is used to form the reduced bases. The reduced order modelling code is simple to implement even with complex gove...

متن کامل

POD reduced-order unstructured mesh modeling applied to 2D and 3D fluid flow

Keywords: POD reduced order model 3D flows Finite element Unstructured mesh Numerical simulation a b s t r a c t A new scheme for implementing a reduced order model for complex mesh-based numerical models (e.g. finite element unstructured mesh models), is presented. The matrix and source term vector of the full model are projected onto the reduced bases. The proper orthogonal decomposition (POD...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • J. Computational Applied Mathematics

دوره 265  شماره 

صفحات  -

تاریخ انتشار 2014